HTR reactors within Polish strategy of nuclear energy development - Cooperation with Japan -

Taiju SHIBATA

Senior Principal Researcher
Group Leader, International Joint Research Group
HTGR Hydrogen and Heat Application Research Center
Japan Atomic Energy Agency (JAEA)

9th International School on Nuclear Power, 15th November 2017, Warsaw, Poland
High Temperature Engineering Test Reactor (HTTR)

HTTR
Graphite-moderated and helium-cooled

Major specification

- **Thermal power**: 30 MW
- **Fuel**: Coated fuel particle / Prismatic block type
- **Core material**: Graphite
- **Coolant**: Helium
- **Inlet temperature**: 395°C
- **Outlet temperature**: 950°C
- **Pressure**: 4 MPa

First criticality: 1998
Full power operation: 2001
50 days continuous 950°C operation: 2010
Loss of forced cooling test at 9MW: 2010
History of HTTR R&D

The first HTGR built in Japan
Thermal power: 30MWth
Reactor outlet coolant temperature: 950 °C

1969
Conceptual design

1979
Experimental very high-temperature gas-cooled reactor for multipurpose

1984
Basic design
System integrity design

1985
Detail design

1997
Construction
Application and permission of construction

2001
Reactor thermal power (30MW), Reactor outlet coolant temperature 850 °C

2002
Safety demonstration test (Control rods withdrawal test)

2004
Reactor outlet coolant temperature 950 °C

2007
850°C/30 days operation

2010
Start of Loss of Forced cooling test
950°C/50 days operation

No CR reactivity control. No core cooling. Reactor is kept stable naturally with only physical phenomena.
Japanese Technologies for HTTR

- **HTTR’s design, construction and operational experiments** (MHI, Toshiba/IHI, Hitachi, Fuji Electric, KHI and etc.)
 Design optimization based on extensive technical database

- **Primary coolant system (MHI)**
 Construction of efficient transport and cooling system for very high temperature heat (950°C)
 Concentric hot gas duct
 Primary pressurized water cooler

- **He/He intermediate heat exchanger (IHX) (Toshiba/IHI)**
 Developed new heat (950°C) resistance material to enable extraction of heat and making of derivative equipment based on such material

- **Reactor pressure vessel (Hitachi)**
 Developed new material having high resistance to very high temperature and pressure and construct new pressure vessel using such material

- **Fuel (Nuclear Fuel Industries)**
 Advanced technology to coat uranium fuel using ceramics with high radioactivity retaining performance

- **Reactor internals (Fuji Electric)**
 Graphite material IG-110 (Toyo Tanso)
 High strength
 High heat conduction
 Irradiation-resistance
Technical development of HTGR is stated in the following policies approved by the Cabinet.

- **“Strategic Energy Plan”** approved by the Cabinet on **April 11, 2014**
 - Under international cooperation, government of Japan facilitates R&D of nuclear technologies that serve the safety improvement of nuclear use, such as high-temperature gas-cooled reactors which are expected to be utilized in various industries including hydrogen production and which has inherent safety.

- **“Growth Strategy 2017”** approved by the Cabinet on **June 9, 2017**.
 - Calls for future R&D concerning the HTGR development to be promoted using JAEA’s HTGR test reactor and through international cooperation.

- **“Strategic Roadmap of hydrogen and fuel cell”** issued by the committee in the METI on **June 23, 2014**.

METI: Ministry of Economy, Trade and Industry
MEXT established a committee including MEXT, METI, JAEA, industries and universities to discuss roadmap and conceptual design for the first demonstration plant.

- Specification of commercial HTGR, R&D plan, introduction scenario are being discussed.

<table>
<thead>
<tr>
<th>Industry</th>
<th>Vendors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Toshiba Corporation</td>
</tr>
<tr>
<td></td>
<td>Hitachi, Ltd.</td>
</tr>
<tr>
<td></td>
<td>Fuji Electric Co., Ltd.</td>
</tr>
<tr>
<td></td>
<td>Mitsubishi Heavy Industries, Ltd.</td>
</tr>
<tr>
<td></td>
<td>Nippon Steel & Sumitomo Metal Corporation</td>
</tr>
<tr>
<td></td>
<td>Iwatani Corporation</td>
</tr>
<tr>
<td></td>
<td>Chiyoda Corporation</td>
</tr>
<tr>
<td></td>
<td>Toyo Engineering Corporation</td>
</tr>
<tr>
<td></td>
<td>JGC Corporation</td>
</tr>
<tr>
<td></td>
<td>Hitachi Zosen Corporation</td>
</tr>
<tr>
<td></td>
<td>Toyota Motor Corporation</td>
</tr>
<tr>
<td></td>
<td>Nissan Motor Co., Ltd.</td>
</tr>
<tr>
<td></td>
<td>Honda R&D Co., Ltd.</td>
</tr>
</tbody>
</table>

Fuel/Graphite manufactures	Nuclear Fuel Industries, Ltd.
---------------------------	Toyo Tanso Co., Ltd.
Trading company/Think tank	Marubeni Utility Services, Ltd.
	Canon Institute for Global Studies
Government	Ministry of Education, Culture, Sports, Science and Technology (MEXT)
	Japan Atomic Energy Agency (JAEE)

Cooperation with Poland

Action Plan: May 2017
for the Implementation of the Strategic Partnership between the
Government of Japan and the Government of the Republic of Poland
for the years 2017-2020

encouraging cooperation toward research and development of high temperature
gas-cooled reactor technologies between the Japan Atomic Energy Agency (JAEA)
and National Centre for Nuclear Research of Poland (NCBJ);

Ministry of Foreign Affairs of Poland

Action plan (May 2017)

Ministry of Foreign Affairs of Japan

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

MOC on R&D (May 2017)

JAEA
Overview of current HTGR R&Ds

(1) Reactor technology
- HTTR
- Reactor outlet coolant temperature 950°C at 30 MWe (April 2004)
- 950°C / 50 days operation (March 2010)
- Advanced fuel development
- HTTR tests for HTGR safety enhancement
- Safety review by NRA is underway

(2) Heat application technologies
- Completion of basic technologies related to hydrogen production facility and gas turbine power generation
- Establishment of operation control technology and facility reliability for IS process
- 31 hrs. hydrogen production with 0.02m³/h (October 2016)

(3) Commercial HTGR design
- Design study of commercial HTGR systems
- Core design of plutonium burning HTGR
- Establishment of safety design philosophy and international standardization for commercial HTGRs

(4) HTTR-GT/H₂ test
- Coupling to HTTR
- Licensing demonstration
- Plant performance test
- Integrated demonstration of HTGR heat application system technologies
Objective of HTTR-GT/H₂ test

- Demonstration of system technologies for HTGR helium gas turbine power generation and H₂ production
- Establishment of safety standard and design consideration for coupling between reactor and heat application system
- Improvement of cost evaluation reliability

Plant cycle schematic

- Reactor
- HTTR
- Secondary heat exchanger
- Isolation valves
- Intermediate heat exchanger (IHX)
- Reactor
- IHX
- Gas turbine
- Precooler
- Recuperator
- Generator

HTTR-GT/H₂ test facility (Planned)
Thank you for your attention.

JAEA is willing to cooperate Polish HTGR program with Japanese mature technologies!

Taiju SHIBATA
shibata.taiju@jaea.go.jp